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Semiclassical mechanics of symmetry reduction 

Stephen C Creaghi 
Lawrence Berltdey laboratory and University of California, Berkeley, CA 94720, USA 

Received 15 June 1992 

Abslreet. We discuss semiclassical approximations that are adapted to given symmetry 
classes in quanNm mechanics. Arbitrary Abelian symmetries and &o rotational symmetry 
are ireated. Semiclassical approximations are derived for the projected propagator and 
energy dependent Green’s function associated with a given irreducible represenration of 
the symmetry group. From these we derive trace formulae, analogous to the usual trace 
formula, that determine the energy levels in a given symmetry dass in terms of dassical 
orbik. 

1. Intmduction 

There has been much interest in recent years in the quantum mechanics of systems 
whose classical mechanics displays chaos [1,2]. Much of the interest has been on 
systems where the classical system, typically with twodegrees of freedom, displays 
global chaos in phase space. The reason is that systems of this kind are relatively easy 
to analyse, both numerically and theoretically, while retaining most of the essential 
features that are of interest in the study of the quantum4assical correspondence. 

In this paper, we consider the extension of the semiclassical formalism to an 
important class of systems not previously amenable to such treatment, except by 
ad hoc methods-these are systems with continuous symmetry. We consider two 
types of symmetry in particular-Abelian and rotational-of which there are many 
examples that occur in practice. These examples range &om rotationally symmetric 
nuclei, atoms, molecules etc., to the axially symmetric electronic motion of diatomic 
molecules or of free atoms in a magnetic field. 

We develop semiclassical approximations appropriate to the restriction of the 
Schrodinger equation to a subspace associated with a given irreducible representation 
j of the symmetry group. In sections 3 and 4 we derive approximations for the 
restricted propagator and Green’s function from which the wavefunctions and energy 
levels in the symmetry class j can in principle be derived [ 3 6 ] .  

While we do not discuss wavefunctions in detail, we do give a detailed discussion 
of the uses of semiclassical approximations in determining symmetry-reduced spectra. 
We show how the reduced Green’s functions can be used to derive Gutzwiller-like 
trace formulae, in which each partial density of states p j ( E ) ,  corresponding to the 
levels within a given symmetry class j ,  is determined by a sum over classical orbits. 
The orbits that determine a reduced spectrum are not periodic in phase space, but 
they are periodic in a symmetry-reduced phase space, obtained when the appropriate 
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fmt integrals have been eliminated. This trace formula complements previous results 
for the complete density of states of a system with symmetry [7]. 

We give two interpretations of the sum. The first, presented in section 5, describes 
the trace formula in terms of the dynamics of full phase space-this is the one that 
is most directly suggested by the derivation. In this interpretation, a component 
of the spectrum is determined by a sum over whole families of orbits which close 
in phase space after some time evolution and also some symmetry operation. This 
interpretation is strongly connected with the results of m. 

The second interpretation is in terms of the dynamics of reduced phase space, and 
while it is simpler in form than the full phase space picture, there are ambiguities in 
the definition of some of the classical quantities occurring in it, such as action integrals 
(at least when one tries to interpret them solely in terms of reduced dynamics). 
Nonetheless this version is of interest because it takes the form of a regular Gutzwiller 
sum applied to the isolated orbits of a reduced phase space, and so it is more directly 
connected to previous theory. We present this interpretation in section 6. 

It should be pointed out that there exist results in the mathematical literature 
relating trace formulae in the presence of symmetry to the process of classical 
reduction. In particular, Guillemin and Uribe [SI discuss a trace formula in which the 
classical input comes from periodic orbits of the symmetry reduced dynamics. Their 
results are similar to the interpretation of section 6, though in a more abstract setting. 

Let us give an outline of the paper. In section 2 we define notation and collect 
together some of the wrious facts !?om group theory that we will use. In section 3 we 
present a detailed derivation of semiclassical approximations for the reduced Green’s 
functions in the case of arbitrary compact Abelian symmetry. In section 4 we outline 
how the calculations may be modified for the case of rotational symmetry. In section 5 
we show how the reduced energy-dependent Green’s function may be used to derive 
the mce formula for the reduced spectrum. In this section the trace formula is 
interpreted in terms of dynamics on full phase space and in section 6 we show that 
the trace formula can also be interpreted in terms of symmetry-reduced phase space. 
In section 7 we show that the partial densities can be summed to find a trace formula 
for the full density of states in terms of periodic orbits of full phase space. 

2. Some preliminaries 

Before getting into the detailed calculations, we begin in this section with a brief 
overview of the symmetry-related quantities that we are interested in calculating. For 
additional discussion and motivation we refer the reader to any of the standard group 
theory references (e.g. [9,10] and also to the work of Robbins [ll] on the case of 
discrete symmetry, where similar objectives were considered. While we will specialize 
the calculation in the following sections to the special cases of Abelian and rotational 
symmetly, it is convenient, for the moment, to keep the discussion general and allow 
for arbitrary continuous symmetry. 

Assuming a compact symmetry group, the irreducible representations can be 
labelled by a discrete index j ,  and Hilbert space ‘H can be correspondingly 
decomposed into invariant subspaces ‘Hi. Orthogonal projection onto ‘Hi is achieved 
by the following operator 
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where D ( g )  is the unitary operator associated with a symmetry g, xj is the character 
for the j th  irreducible representation and dp(g) is the invariant or Haar measure on 
the group, which we assume to be normalized. 

Given an operator X that commutes with the symmetry, we form the reduced 
operator X j  = FjX acting on Xj. Of particular interest to us are the evolution 
operator U ( t )  = exp(-iHt/h) and the Green’s operator G ( E )  = 1/E - H. We 
define Uj(t) = FjU( t )  and G j ( E )  = FjG(E) ,  for which the z-space matrix 
elments are 

and 

where qbs,j(z) and E,,j are, respectively, the wavefunctions and energy levels in the 
subspace 71,. 

3. Green’s function for Abelian symmetry 

In order to proceed with the calculations outlined in the previous section, it is 
necessary to understand the group structure of the symmetry in question. For 
example, in (2.1) it is necessary to know the invariant measure dp(g) and, less 
trivially, the characters xj(g).  We will concentrate in this paper on two types of 
symmetry for which these quantities are trivial or well known-these are Abelian 
symmetry and rotational symmetry. We expect that the generalization to other 
symmetries should be straightforward and should not include any novel features, so 
that the calculations presented here include all the essential structure of the general 
case, differing in detail only. 

We begin in this section with the simplest case of Abelian symmetry, for which we 
give a detailed derivation of the semiclassical approximations to the Green’s function 
of (2.3). In section 3.1 we first detail some of the exact quantum mechanics and in 
section 3.2 we go on to consider semiclassical approximations. We leave the rotational 
case for section 4, where we o u t h e  the analogous calculations for that case, which 
follow the same pattern. 

3.1. Some exact quantum mechanics 

We begin by summarizing the group structure. We assume that G is compact, 
connected and Ic-dimensional, as well as Abelian. (The assumption of connectedness 
is not important-in the case of non-conneaed groups we can initially consider the 
identity component and leave the remaining discrete symmetry for later.) Under 
these conditions, it is possible to show that G is isomorphic with the toms group Tk, 
both topologically and group-theoretically. 

We can therefore use 2rr-periodic coordinates 0 = (O,, . . . ,e,) on G, in terms 
of which the group multiplication law is given by 

g(e) I g(ef) = g(es  e‘) (3.1) 
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where 0 + 8' is computed modulo 2rr in each component. The irreducible 
representations are labelled by k-vectors of integers m = (ml , .  . . ,mk), and the 
corresponding characters are given by [9] 

(3.2) 
- x,(e) = exp (-im. e) 

(we replace the symbol j by m). 
For (21) we note that d .  = 1 and dfi(g) = (25~) -~d0 .  We can assume that 

the symmetry operators D(0j are generated by a collection of Hermitian operators 
J = ( J , ,  ..., J,) as follows 

(3.3) 
i 
f i  

D(0)  =exp(--J.O). 

That each D ( e )  must be of this form follows easily by defining J, = iria/ae,D(e) 
and using the fact that D ( e  + e') = D(e)D(e'). In the limit of classical mechanics, 
the collection of operators J goes over to the collection of first integrals associated 
with the action of the symmetry group G on phase space by canonical transformations. 
It is easy to see that the operators J commute with H just as their classical 
counterparts Poisson commute with the classical Hamiltonian. 

We will compute directly the reduced Green's operator G,( E) from a onesided 
Fourier transform of V,,,(t) as follows 

G,(E)  = 1 J " d t  exp((i/R)Et)U,(t) 
% U  

- 1 1  - -- lwd t /T  dB exp ( ( i / h )E t  + im  .e)  V ( t ,  e) ih (2r)k (3.4) 

where we give E a small positive imaginary part in order to make the time integral 
converge and define V( t ,O)sexp[ - ( i / h ) (Ht+  J . e ) ] .  

3.2 Semiclassical approximafions 

We now consider semiclassical approximations for the reduced operators. We begin 
by constructing an approximation for the (t,€J)-evolution operator V ( t , e ) ,  which we 
will write down by analogy with the usual Van Vleck formula for the propagator. 
From this approximation it will be possible to compute the reduced Green's function 
and energy-dependent Green's function by performing Fourier transforms in various 
combinations of the variables (t ,e) ,  as in (3.4). 

Now, we can immediately apply the Van Vleck approximation to V( t ,O)  if 
we realize that this operator can be interpreted as corresponding the net effect of 
evolution under Hamiltonian H for time t and the evolutions obtained by using each 
J ,  as a Hamiltonian for time 0,. The order in which we perform these Hamiltonian 
evolutions is irrelevant because any two of the operators ( H ,  J )  commute. If we 
denote by K(z , z ' , t ,@)  the matrix element (zlV(t,0)lz') of the (t,B)-evolution 
operator, the Van Vleck approximation can be written in the follow way 
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Here, the sum is taken over classical trajectories that start at position 2' and end 
at position z in configuration space after flowing under the Hamiltonian dynamics of 
H for time 1 and each conserved quantity J,  for time 0.. Also, n is the number of 
degrees of freedom and p is the Maslov index. W(z, zf , t ,  e) is a generalization of 
Hamilton's principal function that is appropriate for the ( t ,@) path 

w(z,zf,t,e) = p - d z - H d t +  J p . d x - J . d @ .  (3.6) 

This action is independent of the order in which the individual parts of the t-  and 
@-evolutions are performed, just as the quantum mechanical operator V ( t , @ )  is. 

We will End it very useful to interpret W(z,z',t ,@) as a wavefunction on an 
extended Hilbert space 'Ha = L2(Rn x R x Rk), consisting of functions of the 
(n + 1 + k) variables ( r , t , @ ) .  We regard z' as a parameter. (Technically, of 
course, K ( s , d , t , @ )  is not an element of 'H, because it is not square-integrable 
in the t coordinate, but this detail is not important.) In the classical limit, E, is 
replaced hy an extended phase space P, = P x Rz x RZk, with canonical coordinates 
( z , p , t , h , @ , j )  and a symplectic form 

t-path O-prlh 

0- = d r  A d p  + dt Adh + dB A d j .  (3.7) 

We generate tdynamics on Pes with the extended Hamiltonian Ha = H ( z , p )  + h 
and @dynamics with the collection of Hamiltonians Jexl = J ( z , p )  + j .  We will 
restrict dynamics to the simultaneous level surface (H,, J,) = 0. 

The extended 'wavefunction' K ( z ,  z', t ,  6') corresponds semiclassically to a 
Lagrangian manifold in Pa, along with a density of pseudoparticles on that manifold, 
each depending parametrically on d. The Lagrangian manifold is determined as 
follows. First consider the ndimensional surface A,, formed by setting z = z', 
( t , @ )  = 0 and (H, ,Jex l )  = 0. We can interpret A, as a Lagrangian manifold in 
P. Now consider the (n + 1 + k)-dimensional surface A swept out in P, when the 
initial surface A, is acted on by the set of all flows corresponding to positive t and 
arbitraIy 8. (We only consider positive t because that is all that contributes to the 
integral in (3.4).) We claim that A is a Lagrangian manifold in Pes and that the 
phase W(z,z ' , t ,@) in (3.5) is given by integrating the following I-form on A 

0 = p. d z  + hdt + j . d@ 

with the initial condition \V = 0 on A,. The assertion that X is Lagrangian follows 
at once from the fact that the initial surface A, is Lagrangian in P and the fact 
that arbitrary t- and @-evolutions preserve both H and J .  That integrating 0 gives 
W(z,s',t,@) is then obvious when one notes that h = - H ( z , p )  and j = - J ( r , p )  
on A. Noting that A is Lagrangian makes obvious our earlier assertion that the 
ordering of paths in (3.6) does not affect W(z,r ' , t ,@).  

The arguments above show that the phase of (3.5) is determined by the Lagrangian 
manifold A. We next investigate the amplitude in (3.5) and interpret it in terms of 
a density of pseudoparticles on A. Good coordinates for A are provided by the set 
(p', t ,  e), where, for a given point E on A, p'( E )  is the initial momentum of the ( t ,  0)- 
trajectory connecting a point ( d ,  pf , t = 0,O = 0) on A, to 1. The amplitude in (3.5) 
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then comes from projecting onto coordinates (x, 1 ,  e),  the density of pseudoparticles 
that is given in the coordinates (p', 1 ,  e)  by the constant (2nA)+ 

(3.9) 

We use here the generating function condition p' = -aW/dz '  on W ( z , z ' , t , 8 ) .  
The amplitude in (3.5) is obtained by taking the square mot of this density, up to the 
phase factor P I 2 .  

We can see why the amplitude should be determined by (3.9) if we note that, at 
(t,O) = 0, the extended propagator is given by W(z,z',O,O) = S(z -a!'). If we 
interpret this as a wavefunction in the unextended Hilbert space 'FI and transform to 
a momentum representation, the result is a plane wave (27rh)-"/Zexp(-ip. d/h ) .  
In terms of WKB theory, this plane wave corresponds to the Lagrangian manifold 
A,, on which there is a density of pseudoparticles given by the constant (27rh)-" in 
coordinates p. 'Ib get the appropriate density for some other ( t ,  e), we then use the 
classical dynamics to transport this initial density along A in Pw The result is the 
density, constant in the coordinate p', that is seen in (3.9). 

The full power of the preceding extended phase space picture for K(z ,z ' ,  t , O )  
becomes evident when we consider deriving semiclassical approximations for the 
reduced propagator and reduced Green's function. In deriving trace formulae, the 
Green's function is more relevant, so we will illustrate the details of this picture 
for G,(z,z',E) rather than for K,,,(z,z',t). The analogous calculations for 
K,,,(z,x', t) follow from rather straightfonvard modifications. Using the integral 
transform in (3.4) to compute G,,,(z,z',E) from K ( z , z ' ,  t , e )  is equivalent, up to 
an overall factor, to changing from the representation (z, t ,O) to the representation 
(z, h , j )  in the extended Hilbert space, where we identify -j with mh and -h with 
E. Semiclassically, this means switching from a projection of A and e onto the 
representation ( z , t , 8 )  to a projection onto the representation (2, t , j ) .  

These observations allow us almost immediately to turn (3.5) into the following 
approximation for G,(z, z', E) 

(3.10) 

In this approximation, the sum is taken over trajectories that start at position z' with 
H = E and J = m h  and end at position z after some (t,8)-evolution. These paths 
correspond to the branches of A at the given values of ( z , z ' , E , J ) .  The Maslov 
index U is computed from the caustics of A in the (z? h,j)-representation. The phase 
S,,,(z,z',E) is given by 

(3.11) 
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This phase can be interpreted as an integral on A of the following 1-form appropriate 
to the (m, h,j)-representation 

O = p * d x  - tdh - 0 . d j  (3.12) 

where we take the initial condition S = 0 on A,. (Choosing the same initial condition 
for all of A, makes Sense because GIr, = 0. A similar mmment applies to the choice 
of initial condition for W.) In fact, we have tdh = 0 and 0 .  d j  = 0 along ( t ,  0)- 
trajectories on A, so S simplilies to an integral of p. dx when evaluated along orbits, 
as in (3.11). 

FinaNy, the amplitude comes from projecting the density e onto coordinates 
( x , h , j )  as follows 

(3.13) 

where, in the last line, we merely switch from ( h , j )  to the more physical variables 
( H , J )  and explicitly indicate that the parameter x' is being held fixed while 
derivatives are taken. 

AI1 of the results above can be verified directly by an explicit evaluation of the 
integral transform in (3.5) by means of the stationary phase approximation. Such 
a calculation also gives explicitly the factor l/ih(27i.)k(2?rili)(n-'-k)lZ appearing in 
front of (3.10). 

In section 5 we will explicitly outline how the energy levels are obtained from 
it through Gutnviller-like trace formulae. We also point out that approximations 
for the wave functions could be obtained from the approximation with appropriate 
generalizations of the calculations of Bogomolny [SI or Berry [6], though space does 
not permit us to detail these calculations here. 

4. Green's functions for rotational symmetry: a summary 

In this section we compute reduced Green's functions for the case of rotational 
symmetry. The calculations are similar in spirit to those of section 3, so we will omit 
much of the detail and concentrate on the main concepts. 

We will consider the case that the rotational symmetry arises through a unitary 
representation R - D(R) of the rotation group SO(3). We will ignore spin 
in this treatment, so SO(3) rather than SU(2) is the relevant symmetry group 
for the problem. We have in mind here the common physical case that Hilbert 
space 31 = Lz(Ipa3,) corresponds to N interacting spinless particles in 3-space 
and the representation D ( R )  acts on wavefunctions according to $(q,. . . , x N )  -, 
@(R-'q, .  . . , R-'x,). However, in practice we do not have to make any detailed 
assumptions about the system so we will keep the discussion general. 

We begin in section 4.1 by establishing a set of notations for dealing with the 
rotation group and recalling those properties of it, such as the characters and invariant 
measure, that are necessary to compute symmetry reduced operators. Semiclassical 
approximations for these operators are then computed in section 4.2. 
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4.1. The rotation group: some notation 

We begin our discussion of SO(3) with the invariant measure. The rotation group is 
3dimensional and we can parametrize elements of it by the rotation angle p and a 
unit vector e along the axis of rotation. We will often write R(e,p). In terms of 
this parametrization, we can wite  the normalized invariant measure in the following 
form [9] 

(4.1) 
1 .  dc( R )  = - s&p/Z)dn, d q  2?rz 

where dR, is the solid angle surface element for the unit vector e. The coordinates 
(e,p) are good coordinates everywhere on SO(3) except at the identity (though they 
may be double-valued, depending on what range is chosen for 9). 

We will also find it convenient to use local coordinates 0 that are defined in a 
neighbourhood of any given rotation R, as follows: we let R(& Ru) = exp(eaFa)&, 
where where Fa are the generators for rotations about the coordinate axes of 3-space. 
In terms of these local coordinates, the invariant measure at the point R,, is given by 

The irreducible representations of SO(3) are labelled by the non-negative integers 
j, which we refer to as the angular momentum quantum numbers, and have dimension 
dj  = 2 j  + 1. It can be shown that the corresponding characters are given by 191 

where p is the angle of rotation of R. 
FiiaUy, by analogy with section 4.1, it is convenient to define the oper- 

ator V ( t , R )  = D ( R ) U ( t )  and the extended propagator IC(z,z',t,R) = 
( 4 V ( f ,  WIZ'). 

4.2. Semiclassical approximations 

With the help of the information on SO(3) outlined in section 4.1, we are now ready 
to use (21) to calculate symmetry-reduced operators. In doing so, we find that the 
character of (4.3) is such that some of the symmetry between time evolution and group 
operations that was present in the calculations of the previous section is lost when 
one calculates the reduced Green's functions for rotational symmetry. In particular, 
there is less to be gained in doing the time and group integrals simultaneously in the 
appropriate generalization of (3.4). For this reason we go through the intermediate 
step in this section of calculating the reduced propagator before calculating the 
reduced Green's function. It is also hoped that the reduced propagator might itself 
be of intrinsic interest for the important case of rotational symmetry. 

As before, we start with a semiclassical approximation for the extended propagator 
K ( z , z ' , t , R ) ,  based on a Van Vleck approximation for a non-autonomous 
Hamiltonian evolution. We first evolve for time 1 under Hamiltonian H and then use 
the components of angular momentum as Hamiltonians to affect the rotational part 
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of the evolution. If the rotation is R(e,(o),  then the rotational part of the evolution 
can be brought about by the Hamiltonian J . e, used for time (o. 

The resulting approximation is 

in which the sum is over classical trajectories that begin at z' and end at z after 
evolution under Hamiltonian H for time t and after a rotation R (cf. (3.5)). The 
phase W(z,z ' , t ,R) is given by 

p - d z - J . e d ( o  J W(Z,Z ' , t ,R)  = J p . d z - H d t +  
t - p t h  R-path 

(4.5) 

(cf. (3.6)). In appendix A we discuss the function W ( z ,  z', 1 ,  R)  in detail and show 
that it is naturally interpreted as the integral of a I-form on an extended space 
P x B x SO(3). 

lb calculate the reduced propagator K j (x , z ' , t ) ,  we apply the operator of (2.1) 
to this approximation, using the information outlined in section 4.1, and compute the 
resulting integral over SO(3) by means of the stationary phase approximation. There 
are two sources of rapidly varying phase in the integral. The first and obvious one is 
the phase of (4.4). The second is in the character of (4.3), where we should allow for 
j to be of order 1/A. 

'lb perform the stationary phase calculation, we break the character contribution 
sin [ ( j  + ;)p] into exponentials, exp [&i(j  + $)(o], and combine them with the 
exponential of (4.4). Applying the stationary phase condition to the resulting overall 
phase gives the conditions 

- -=++;)A aw 
ap 

_ -  - 0. aw 
ae 

In appendix A we show that the function W(x, z', t ,  R )  obeys generating function 
conditions with respect to derivatives in R that allow us to reinterpret the equations 
above as 

J = ( j  + 1/2)h and J - J ' = O  (4.8) 

where J' and J are, respectively, the initial and final total angular momenta of the 
trajectory connecting z' to z and J is the magnitude of J (or J'). The orbits that 
contribute to Kj(x,zt, t )  are therefore those for which the total angular momentum 
has magnitude ( j  + $)A and the vector angular momentum is conselved, so that the 
rotation axis must be parallel to J = J'. 

lb complete the calculation, we now assume that these stationary phase points are 
isolated on SO(3) and compute the Gaussian stationary phase integrals about those 
points. We relegate the details of this calculation to appendix B and quote here the 
final result. 
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The semiclassical reduced propagator is 

where the amplitude is given by 

(4.10) 

The sum is over classical trajectories that start at x' with J = (j + i ) h  and end 
at x after a time evolution of t and some rotation about the vector J .  The phase 
Wj(z,z',t) associated with each trajectory is given by an action integral like (4.5) 

Wj(Z,d,t) = / p . d x - H d t +  J p * d z  (4.11) 
2 - p l b  R-path 

in which the J .  e d p  part of the integral in (4.5) has been cancelled by the phase 
( j + $ ) q  of the character in (4.3). The Maslov index p j  is described in appendix B. In 
the expression for Dj(z,z',t), the I and 11 subscripts refer to components of vectors 
perpendicular and parallel respectively to the axis of rotation of the contributing 
trajectory. Note that the Jacobian in (4.10) brings into play trajectories near the 
contributing one that have slightly different endpoints x and rotations R(B;R,) 
(where R,, is the rotation in the contributing trajectory), for which J # J'. 

4.3. Semiclassical approximation for G, ( I, z', E )  

For computing trace formulae, we will ultimately be interested in approximating 
the reduced energy-dependent Green's function G j ( q  x', E). We present below 
the result of performing a stationary phase approximation of the one-sided Fourier 
transform relating Gj(z , z ' ,E )  to Ic>(z ,z ' , t )  (as in (3.4)), in which we use (4.9) 
for the reduced propagator. The details of the calculation are not vety illuminating 
so we do not present them. The resulting approximation is 

(4.12) 

where 

and 

S j ( Z , Z ' , E )  = p .dx .  

(4.13) 

(4.14) 
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This approximation is a sum over trajectories that begin at I' with H = E and 
J = (j + $ ) h  and end at z after some time evolution, and some rotation about 
the direction J = J'. The Maslov index f i j  is obtained by adding 1 to pj  if 
-azwlat2 = a E / a t  is positive and is equal to pj  otherwise. 

It is useful to have a geometrical interpretation for the approximation (4.12) in 
terms of a Lagrangian manifold in P. This Lagrangian manifold Aj(z', E )  is for 
fixed values of z', E and j and is formed by taking the (isotropic) initial surface 
{z = z',  H = E ,  J = ( j  -t ; ) E }  and acting on it with all possible time evolutions 
and acting on each individual point with all rotations about the vector J'. It is not 
difficult to verify that Ai(=', E )  is indeed Lagrangian and that the phase Sj of (4.14) 
is obtained by integrating the 1-form p . d z  over A, with the condition S, = 0 on 
the initial surface. One of the principle advantages of using this approach is that 
increments in the Maslov index f i j  can be obtained from the zspace caustics of 
X j ( ~ ' ,  E) in the usual way without going through the more cumbersome calculation 
outlined in appendix B. 

5. Race formulae 

In this section, we show how the approximations for the reduced Green's functions 
that were derived in the previous sections may be used to derive trace formulae for 
symmetry-reduced spectra. The calculations here complement those of [7], where we 
considered trace formulae for the full spectra of systems with symmetry. Here, rather 
than determining all of the energy levels at once, the trace formula we consider will 
determine the energy levels within a symmetry class. The classical orbits contributing 
to this trace formula will not, as in [7], be periodic, though they will project to 
periodic orbits in a symmetry-reduced phase space. 

The calculation proceeds by considering the trace of the reduced energy- 
dependent Green's function for the symmetry class j ,  defined as follows 

1 g j ( E )  E dzGj(z,z,E) = s E - En,j  ' 

The reduced density of states is obtained from gj ( E )  in the usual way: pj ( E )  = -+ Im gj ( E  + iof ). We evaluate this integral using a stationary phase approximation. 

5.1. Abelian symmetry 

We illustrate some of the details for the case of Abelian symmetry, in which case we 
replace the symbol j by m. Let us begin by examining the stationary phase condition 
on the phase S,,,(z,z,E) of (3.11) that occurs when this approximation is applied 
to G,(z,=, E )  

where p' and p are, respectively, the initial and final momenta of the ( t ,  @)-trajectory 
at energy E and J = nah that begins and ends at position z. We use here the 
following generating function conditions on S,,,(z,z', E )  
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which can be derived from the definition (3.11) by the usual methods. As usual, 
the two types of trajectories contributing in a stationary phase analysis are, closed 
trajectories, for which p = p' and ( t , O )  are finite, and so-called zero-length orbits, 
corresponding to the limit of trajectories for which ( t ,  8) + 0. 

Though we do not do so here, it is possible to show [I21 that the zero-length 
trajectories give rise the following Thomas-Fermi-like smooth density of states 

d z  d p  P,(E) Ei: f i b  J o. S(J - mh) 6(H - E ) .  (5.5) 

The finite-length trajectories will give rise to fluctuations superimposed on this mean 
density and we will concentrate on these orbits in the rest of this section. 

The finite-length closed orbits contributing here are not the regular periodic orbits 
that contribute to the full density of states, but are generalized periodic orbits in the 
sense that the phase space trajectory closes after some time evolution and also some 
non-trivial 8-evolution-we will refer to them as pseudoperiodic orbits. These orbits 
also arose in the calculations of [7] for the full density of states, but only through 
derivatives in which the O-evolution was infinitesimal. Here, finite &evolutions are 
relevant. As in [I we denote by (T,@) the values of ( t ,8)  necessary to close the 
orbit, and refer to (T, 0) as the generalized period. The condition 0 = 0 on orbits 
contributing to the full density of states is replaced by the condition J = m h  for 
orbits contributing to the reduced density of states. 

As with the regular orbits in [I, the pseudoperiodic orbits for given values 
of (H, J) are not isolated in phase space but occur in k-parameter families, 
parameterized by 8. Including time, each periodic orbit is imbedded in a (1 f k)- 
dimensional manifold, which we denote by r and which we parameterize with 
coordinates ( t , O ) .  When computing the trace of G,,,(z,z',E), we will therefore 
need to use a degenerate stationary phase analysis around the family r. 

'lb do this we introduce configuration space coordinates z = (z,,,zL) such that 
the coordinate axes of the (1 -t k )  coordinates zII point along r and the coordinate 
axes of the ( n  - 1 - k) coordinates zL are transverse to r. The integral over the zL 
coordinates can be performed using a stationary phase expansion, leaving an integral 
of the zI1 coordinates over r as follows 

where 

The sum in (5.6) is taken over pseudoperiodic orbit manifolds r at energy E and 
J = mh. For a given r, S,( E) is the action integral of (3.11), evaluated around any 
one of the pseudoperiodic orbits in r. We introduce the Maslov-index-like integer 
4 = vfr, where  is the number of negative eigenvalues of the ( n - I - k ) x ( n - 1 - k )  
matrix a2s,(z,z, E)/az,az,. 

The main thrust of the calculation will be to give A ( r )  a more transparent, 
intrinsic interpretation than is evident in (5.7). As a first step, we expand the matrix 
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a2S,,,(z,x, E)/az,ax, according to the chain rule and reinterpret its determinant 
as a Jacobian 

a2S,(z,z,E) azSm(z,z‘, E) a*S,(z,z’,E) 82Sm(~,x’,E) 
az;az, + - - az,ax, az,az, + ax,az; 

82S,(z,r’, E )  
+ ax;ax; 

where - stands for ‘has the same determinant as, up to a sign’. The quantities 
pI,, p,, zll and z, represent a seperation of phase space variables according to the 
decomposition z = (xll,z,). All derivatives above are taken at constant zII, xi,, E 
and J ,  except in the last line where we explicitly indicate otherwise. Also, we set 
z = 2’ and p = p‘ after all derivatives have been taken. 

Using (5.8) and the chain rule, we can combine the two factors in the integrand 
of (5.7) to give the following form for A ( r )  

(5.9) 

The next step is to eliminate dzl l  in favour of the natural volume element dt d e  on 
r. We do this by using the chain rule to seperate out an appropriate Jacobian from 
the integrand of (5.9) and combining with dzl l  as follows 

(5.10) 

This identity was shown under similar conditions in [7], so we refer the reader there 
for details. 

We are left with the following expression for A ( r )  

(5.11) 
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The Jacobian in the integrand here also turned up in [7l, where we found that it was 
related to a linearization A4 of a reduced surface of section map as follows 

(5.12) 

The surface of section C is formed by setting H = E, J = m h  and fixing zll. The 
map qj : C -t is obtained by starting trajectories on C near r, letting them Row 
once around I', and finally using the I + IC flow parameters (t ,f3) to get trajectories 
back onto C. 

We are just left with a normalization of the volume element dt do  over r, which 
we denote by 

WO = L d t d O .  (5.13) 

WO is equivalent to the quantity TU1$ that was introduced in [7], where To is the 
period of a primitive periodic orbit and Vu represents the 0 part of the integral over 
r. We have changed notation because the definition of the primitive period To is 
somewhat ambiguous when 8-evolutions are allowed in closing the orbit. 

The final result is the following trace formula for g,(E) in terms of generalized 
periodic orbits 

(5.14) 

The reader will notice that this trace formula is remarkably like the regular trace 
formula of Gutzwiller, applied to the isolated periodic orbits of the symmetry-reduced 
classical dynamics. We will explore this question in the next section. First, however, 
let us review the mrious quantities contributing to (5.14). 

The sum is taken over orbits that close in phase space after a (t,8)-evolution 
of (T, 0).  at energy H = E and J = mh. The phase S,( E) occurring in the 
contribution of each orbit is an integral of p . d r  around both the t and 0 parts of 
the orbit, as in (3.11). 

While we do not do so here, it is possible to show [12] that D is the Maslov index 
of the stable or unstable manifold of the periodic orbit family r. This interpretation 
is possible because the invariant manifolds are Lagrangian for the Abelian symmetries 
considered in this section, and therefore they have well-defined Maslov indices. This 
result generalizes the results of [13,14] for the Maslov index of the regular trace 
formula. 

In the amplitude term, Wu is the normalization of the volume element dt df3 on 
I'. This is often just (ZT)~T" ,  where Tu is the time period of the first repetition of 
the orbit, however this is not always the case. as we discuss in the next section. The 
2(n - 1 - k) x 2(n - 1 - k) matrix A4 is a linearization of a reduced surface of 
section mapping, whose construction was described in detail in [7]. We can also use 
a linearization of a regular surface of section mapping constructed for the classically 
reduced dynamics. 

The trace formulae [7] for the full density of states can be recovered in the case 
of Abelian symmetry by summing over the partial densities in (5.14) and using a 



Semiclassical mechanics of qmmetty reduclion 109 

stationary phase approximation. The stationary phase contributions come from those 
families r' of orbits which 0 = 0, and the result is a sum over families r' like (5.14) 
except for hvo structural differences. The first is that a square root of the determinant 
of the k x IC symmetric matrix a 0 / a J  = a * S / a J a J  appears in the denominator 
and the second is that the Maslov index must be replaced by 0' = v + 6, where 6 is 
the number of positive eigenvalues of a @ / a J .  (These results were derived in [12].) 

An important special case of the systems considered in this section is when 
k = n - 1, so that there are enough first integrals to make the system integrable. In 
this case the rs correspond to the discrete set of invariant tori specified by H = E 
and J = ( j  + $)h, and the sum in (5.14) reduces to a sum over iterations of 
corresponding primitive orbits. Just as in the case of the regular Gutzwiller sum 
applied to 1-dimensional systems, this can be summed geometrically. The result is 
equivalent to the well-known torus or EBK quantization conditions. Details of thii 
straightforward calculation can be found in [12]. Along with the demonstration that 
the sum in (5.15) for the full density of states can be decomposed into the partial 
sums of (5.14), this calculation shows in a ve'y transparent way the fact that the 
Gutmiller sum is equivalent to torus quantization (cf. 1151). 

5.2 Rotational qmmetty 

One finds a similar trace formula for the case of rotational symmetry by tracing 
over (4.12). In this section we present the results of such a calculation. 

The interesting stationary phase contributions to the trace of Gj(z,z', E )  come 
from orbits with H = E and J = ( j  + $)h  that close after some time evolution 
(time T say) and some rotation R Because J must return to its original value at 
the end of the orbit, R must be a rotation about the direction of J ,  and we denote 
by Ell1 the angle of rotation about this axis. By acting on the initial point of any orbit 
by arbitrary time evolutions and rotations, we map out a 4-dimensional surface r in 
phase space, consisting of points that are periodic under a time evolution of T and a 
rotation through angle El,, about the angular momentum direction. 

Just as in (5.6), the result of a degenerate stationary phase analysis is a sum 
over families of orbits r, with the contribution of each family being determined by 
a 4dimensional volume integral over that family. We will not provide the details of 
the analysis of that volume integral here, but we will give a detailed description of 
the results. A hull and explicit analysis can be found in [12]. 

The result of the analysis is 

In the phase, Sj( E )  is an action integral around any one of the orbits on r, including 
the rotational part of the orbit, and U is a Maslov index. 

In the amplitude, W, represents an integral of the natural volume element 
dtdfi(R) over r 

W - dldfi (R) .  4 (5.16) 

W, can also be interpreted on a reduced phase space as the period of an appropriately 
defined primitive periodic orbit, as discussed in section 6. Also in the amplitude, M 
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is the linearization of a certain symmetry-reduced surface of section map, discussed 
in detail in [7]. We review briefly here the construction of this map. 

The constructions of the reduced surface of section C and the associated map li, 
are similar to the analogous constructions of section 5.1 for Abelian symmetry, except 
that there are modifications to take into account the fact that only the magnitude J 
and not the full vector J of first integrals is conserved by all symmetries. To form C 
we set H = E and J = (j+ i ) h ,  and fur any other 4 independent functions such that 
the resulting 2(n - 3)-dimensional surface C intersects r at a point. The map $ is 
formed by taking trajectories that start on C around r and using the 4 independent 
parameters of evolution ( t ,  R) to make those trajectories return to C. As discussed 
in [7], this map is symplectic and has no remaining symmetry. As discussed in the 
next section, this map is closely related to a regular surface of section maps on a 
reduced phase space. M is the linearization of $ at r. 

It should be noted that this discussion of (5.15) does not hold in the important 
special case j = 0. The trace formula in that case is still formally like (5.15) applied 
to orbits with H = E and J = 0, except for two differences which reflect the fact that 
the classical reduction procedure is special for J = 0 (proved in [12]). The reduction 
procedure is different in this case because setting J = 0 is equivalent to setting all 
three components of J to 0, which results in one fewer degrees of freedom for the 
reduced system. R r  example, following the procedures outlined in this paper, the 
reduced surface of section C has dimension 2( n - 4) rather than 2(n - 3). The first 
difference therefore is that the linearized map M has dimension 2( n - 4) instead of 
2(n -3). The second difference is that the factor (2~ih)-("- ') /~ should be replaced 
with (2~ih)-(*-~)/ ' .  

We should also note that the results of [7l for rotational symmetry are recovered 
by summing over j in a stationaly phase approximation. The result is a sum like (5.15) 
and the details are presented in [12]. 

Finally, we remark that that the form of (5.15) is easily applied to general 
symmetries if the degeneracy factor 2 j  + 1 is replaced by the dimension d j  of a 
general irreducible representation. Of course, points on r are now parametrized by 
( t ,g)  and the appropriate volume element with which to compute W, is dtdfi(g) 
where dfi(g) is the normalized invariant measure for the general symmetry group 
G. However, we have not shown that this extension is valid and leave it as a (rather 
natural) conjecture. 

6. Connection with Gutmiller's sum for non-symmetrlc systems 

The forms of (5.14) and (5.15) are very reminiscent of the regular trace formula, 
except that the periodic orbit sum is applied to the periodic orbits of a symmetry- 
reduced classical phase space rather than full phase space. In this section, we will 
explore this connection further, and we will show that the identification is largely 
correct. In doing so however, some of the seemingly obvious correspondences between 
the trace formulae of section 6 and the usual formula for non-symmetric systems 
exhibit somewhat subtle complications, and we will examine these in detail. 

The most obvious point to make is that the families of pseudoperiodic orbits 
contributing to the sums in (5.14) and (5.15) correspond to regular periodic orbits 
in a symmetry-reduced classical phase space (figure 1). For notational purposes, it is 
convenient to fist explain this in the most interesting case of rotational symmetry- 
with minor modifications that we outline at the end of the section. the discussion 
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t 

generalised 
periodic orbir 

Figure 1. On passing from the full dynamics 10 the 
penCd,c orbit symmelly-reduced dynamics. a pseudoperiodic orbit 

(C) projects to a regular periodic orbit in reduced 
t phase space. 

can easily be applied to other symmetries. We first give a brief description of the 
classical reduction process. The discussion follows the general theory, described in 
Amol'd [16], and more fully in Abraham and Marsden [17J 

Given a classical system with rotational symmetry, the first step is to restrict 
dynamics to a level surface E, of the magnitude J of total angular momentum. 
Notice that this surface is invariant under time evolution and also arbitrary rotations. 
Therefore, the full group SO(3) is a symmetry group of this restricted dynamical 
system. The reduced phase space p, is then formed by identifying, in this restricted 
space, points that are related to each other by some symmetry transformation. 
Technically, the reduced phase space is the quotient space PJ = EJ/S0(3). We 
denote by ?i the projection from E, to p,. Notice that forming the quotient space 
here is analogous to ignoring the B coordinate in the case of axial symmetry and that 
the restriction of dynamics to E, is analogous to fixing p, to some constant value in 
that case. 

'hjectories on reduced phase space are obtained by projecting down to p, 
trajectories on E,. This defines a well-defined set of dynamics on p, because 
trajectories on EJ display S0(3)-symmetry. It is evident that a pseudoperiodic orbit 
family r at J = ( j  + $ ) E  projects down to a regular periodic orbit in Pj (where, in 
a slight change of rotation, we label the reduced phase space by the integer j rather 
than J ) .  Therefore (5.15) can be interpreted as a sum over the periodic orbits of 
energy E in the reduced system, and these are isolated if SO(3) is the only symmetry 
of the original system. 

Perhaps the most important feature of the periodic orbit sum is the phase variation 
S,(E),  and to interpret this we must examine the symplectic structure of pj. We 
define a sympectic form a, acting on two vectors G and ir tangent to p j ,  as follows. 
We find two vectors U and v tangent to E,, for which G = T.U and ir = T ~ U ,  

and define f i ( G , i r )  = n ( u , v )  - J ,PbcdJb(u)dJc(v) ,  which turns out 117, to be 
independent of the choice of U and 'U. 

While the symplectic form can naturally be projected down to ij in this way, the 
same is not true for the 1-form p . dx with which Sj(  E) is calculated. This causes 
considerable problems in interpreting the trace formula entirely in terms of reduced 
phase space. To examine S j ( E ) ,  let us associate with the pseudoperiodic orbit a 
definite path C in phase space, obtained by first applying time-evolution for time T 
to some initial point on r, and then applying the rotation through angle OI1 about 
the direction of J .  Sj (E) is then the integral of p dx around C. 

Let us initially suppose that it is possible to find a 2-dimensional surface 'R on 



112 S C Creagh 

which J is constant (actually, it is necessary only to assume that J be constant on 
R, but the stronger assumption simplifies the argument considerably) and which is 
bounded by C in such a way that C = -aR. Then Stokes' theorem tells us that 
S j ( E )  is obtained by integrating the full phase space symplectic form fl over R as 
follows 

S ; ( E )  =/ R. 
R 

Now we note that the curve C projects to the periodic orbit 7 in reduced phase 
space and IZ projects to a surface 7? bounded by 7. We can immediately write 

where we use the fact that d J  = 0 on R. Therefore it is possible in this case to 
associate Sj ( E )  with an action of 7 defined entirely within reduced phase space. 

It is not always possible, however, to find a surface R for which the stated 
conditions hold, and in this case (6.2) is not valid. It is simplest to illustrate such an 
exception with the case of axial symmetry in 3degrees of freedom rather than with 
rotational symmetry. The reduction process is the same except that J is replaced with 
J ,  and SO(3) is replaced with SO(2). We consider in particular the case of a curve C 
which encircles the z-axis and for which J ,  # 0. Then any surface which is bounded 
by C must intersect the z-axis in configuration space, and this is incompatible with 
the condition that J ,  = z p ,  - yp, # 0. We expect similar exceptions to occur Cor 
more complicated systems. 

The topological problems outlined above in using 6 to compute S j ( E )  presents 
a serious problem because, as mentioned previously, it is not always possible to define 
a global 1-form on 6 in a natural way. An example for which this can be seen is that 
of a free rigid body (a spherically symmetric system), for which the reduced phase 
space is topologically a sphere and the reduced symplectic form is proportional to the 
solid angle 2-form, U say [SI. It is not dilficult to see that there is no globally-defined 
1-form 0 for which w = -de. Similar considerations hold for N-body systems with 
overall spherical symmetry. 

Of course, it is sometimes possible in specific examples to Overcome these 
problems. (For example, in the case of an axially symmetric 3-degree-of-freedom 
system, one can define a 1-form p,dp + p,dz on the reduced space. It can be shown 
that integrating this around reduced periodic orbits gives a result which differs from 
S,(E) by a term 27rNJ,, where the integer N is the winding number of the orbit 
C around the z-axis. When J ,  = mh, this term does not affect the periodic orbit 
sum.) However, it is not clear that there is an easy interpretation for S, ( E )  in terms 
of p; that is applicable with complete generality. For this reason, we believe that the 
full phase space definition as an integral of p .dz around C remains the conceptually 
most useful interpretation for Sj( ,E) .  

The factor W,, also needs consideration. For a given orbit with generalized period 
(T, ell), let T, be the primitive period of the corresponding orbit .i. in reduced phase 
space. We can then parametrize points in r with a time coordinate t between 0 and 
To and rotations R in SO(3). If, for a given 1,  every different R corresponds to a 
distinctpint on r, then the integral in (5.16) defining W, breaks into a time integral 
giving T,, and an integral of the normalized invariant measure over S0(3), giving 1. 
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It is possible, however, that a given point on r has a discrete isotropy subgroup of 
N I  rotations that leave the point invariant. In this case a point on r will correspond 
to N I  rotations in SO(3) and the estimate above for Wu overcounts by a factor of 
NI. Instead we must use 

TU Wu = -. 
NI 

This effect of the discrete symmetry is counteracted, however, by the fact that 
NI different orbits corresponding to the same reduced orbit 4 will contribute to 
the sum in (5.15), each giving the Same contribution. If Olli with 1 < i ,< N I  
are the rotation angles of the elements of the symmetry group, and (T,OII) the 
generalized period of an orbit on r, then there are associated with this orbit N I  
generalized periodic orbits with generalized period of the form ( t ,  01, f Ori). Even 
though each of these orbits corresponds to the same manifold of points in phase 
space, each contributes separately in (5.15), just as multiple repetitions of a primitive 
orbit contribute separately to Gutnviller’s sum. Each of these orbits projects to the 
Same reduced orbit i. and gives an identical contribution to (5.15). 

The effect is that if we just sum over reduced orbits q,  we can replace (5.15) with 
a sum that is identical in form to the regular Gutmiller sum applied to the periodic 
orbits of the reduced dynamics 

Thus we arrive at the pleasing result that the quantally reduced spectrum is 
determined by the classically reduced periodic orbits in the usual way. 

We point out that this discussion can be modified for the Cdse of Abelian symmetry 
by some easy modifications. The reduced phase space is formed by king the full set 
of constants J and modding out by the symmetry group. The appropriate reduced 
phase spaces for the reduced trace formulae are then labelled by the integer vectors 
m, for which J = mh. The discussion can then be generalized almost as simply as 
replacing j with m everywhere in the argument. 

7. Conclusion 

We have seen in this paper that the symmetry-projected propagators and Green’s 
functions of a system with continuous symmetry can be approximated in terms of 
classical trajectories that are the result of both time evolution and the application 
of some symmetry operation. In return for allowing symmetry operations as well 
as time evolution, the trajectories are constrained to certain values of the first 
integrals that are implied by the symmetry. These values correspond to the irreducible 
representation that one is interested in (e.g. J = ( j + 1 / 2 ) h  for rotational symmetry). 
The results in this paper are consistent in form with the previous work of Robbins [ll] 
on the case of discrete symmetry. 

The process of allowing symmetry operations but restricting the first integrals, as in 
J = ( j  f 1/2)h for rotational symmetry, corresponds precisely to looking at orbits in 
a symmetry-reduced classical phase space. That is, we find that restricting operators, 
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wavefunctions etc to a subspace of Hilbert space corresponding to a given irreducible 
representation goes over in the classical limit to the classical reduction process of 
fixing the first integrals and then quotienting out by the symmetry group [16,17]. Many 
of the classical structures that arose in the calculation, for example the Lagrangian 
manifolds from which the phases of the Green’s functions are constructed, project 
naturally to symmetry-reduced classical phase space (this point is discussed more fully 
in [12]). Therefore, in some loose sense, we can think of the semiclassical Green’s 
functions as being determined by the classically reduced phase spaces. There are 
problems in interpreting this analogy in a precise way however because the classical 
reduced phase space does not necessarily decompose naturally into configuration and 
momentum spaces. Therefore we cannot, for example, write the Green’s functions 
in terms of an argument (Z,Z’), consisting of configuration space coordinates on 
reduced phase space, or find a natural counterpart in reduced phase space to the 
1-form p . dz that determines the phase. Nevertheless, any structures that depend 
purely on symplectic geometry can be naturally restricted to the reduced space, so in 
a purely formal sense, the natural classical limit of the restricted Hilbert space X, is 
reduced phase space. 

As well as approximations for the Green’s functions themselves, we computed 
their traces and found Gutmiller-type trace formulae for the symmetry-projected 
densities of states. These trace formulae involve families of orbits that close 
on themselves after time evolution and a symmetry operation (which we called 
pseudoperiodic orbits). These orbits correspond to regular periodic orbits in the 
dynamics of reduced phase space so the trace formulae, like the Green’s functions, 
can be interpreted formally as depending on the classically reduced phase space. 
In fact, we showed in section 6 that the symmetry-projected trace formula looks 
exactly like the regular Gutzwiller formula applied to the dynamics of reduced phase 
space. However, the actions and Maslov indices ocurring in these formulae are 
unambiguously determined only by the full phase space structures. 

The derivations presented in this paper were for the particular cases of continuous 
Abelian and rotational symmetry. These cases, epecially rotational symmetry, are 
very important physically, and it is expected that the results presented here will be 
of use in nuclear, atomic or molecular problems where rotational symmetry is an 
important factor. The final results do not, however, depend in an obvious way on the 
particular type of symmetry, so we expect that they can be applied without significant 
modification to systems with arbitrary symmetry, as outlined at the end of section 5. 
We have not, however, proved this. 

Appendix A 

In this appendix we use an extended phase space P = P x R  xSO(3)  to investigate the 
function W(x ,  x‘, t ,  R), and in particular to justify the generating function conditions 
that lead to (4.6) and (4.7) (see also (B2)). 

First of all, let A, be any Lagrangian manifold in regular phase space P. We 
will ultimately let A, be specified by the conditions z = z’, but for now we let it be 
arbitrary. If we act on A, with all possible rotations and time evolutions, we generate 
a ( n  + 1 + k)dimensional manifold A in P and we claim that the following 1-form 
is closed on A 
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Here, the 1-forms wa are to be interpreted as 1-forms on SO(3) that are obtained by 
right translating the three basis vectors of so(3)'. the dual to the Lie algebra so(3). 
The 1-form U', acting on any given vector tangent to S0(3), gives the ath component 
of the vector relative to the local coordinates 0. We point out that dw" + 0 

%king the differential of 0 we find 

- dO = a - d t  A d H  - wa A d J ,  + J,dwa (-w 
where 0 is the usual symplectic form on phase space. Using the fact that A, is 
Lagrangian and the fact that [17] dw'(Y<,Y,) = ( W ~ , Y ~ , , ~ ) ,  where YE is the right 
invariant w t o r  field on SO(3) associated with the Lie algebra element <, it is not 
difficult to show [12] that del ,  = 0. We do not show the details here however. 

Now choose A, to be the initial Lagrangian manifold x = I' and define the 
function W to be the integral of 0 on A,  which is path-independent because 
dO1, = 0. This definition of IY is easily seen to coincide with the definition of (4.5) 
and from the form of 0 in (AI) we can immediately write down the following 
relationships 

alY(x, x', t ,  R) = -J,. aoQ 

'Ib derive the relationships in (B2) we must relate the coordinates 0 to the coordinates 
($, ell) (defined in appendix B) and this is done in appendix C We use (Cl) proved 
there to see that 

aw a w  ae - - = --. - = ( I  - &)J = J - J '  
all, a0 a$ 
a w  a w  a0 --..- - -=. 
av 

= e o .  J 

where we use i?,,J = R;'J = J'. Also, in (AS), we take only the hvo components 
perpendicular to ew 

Appendix B 

In this appendix, we supply the missing details of the calculation in section 4 leading 

Fit, in order to understand more fully the stationary phase conditions (4.8), 
and in order to facilitate the coming stationary phase calculation, we introduce a 
parametrization of unit vectors e near the zero-order unit vector eo by coordinates 
$, which are defined approximately through 

up to (4.9). 

e % eo + $ x eo. (B1) 

We can think of ll, as a 2-vector in the plane perpendicular to eo and we can define 
this vector more precisely through e = exp($aF,)eo. It is not difficult to see that 
at eo the solidangle surface element can be expressed in the form dn,, = d$. We 
can now use the local variables (+,(2) rather than (e,p) to parametrue rotations. 
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If we expand W(z , z ’ , t ,  R) around an orbit for which J = Je,,  we can derive the 
following generating function conditions 

which are easily seen to imply (4.8). (B2) is a generalization of the condition 
aW/af  = - H  satisfied by the ordinary Hamilton’s principal function and is derived 
in appendix A. 

’Ib complete the stationary phase approximation of the integral over SO(3) for 
Kj(z,x‘,t), we expand the phase W ( z ,  d , t ,  R) out to second order in the variables 
(q, +) and evaluate the resulting 3-dimensional Gaussian integral. With the help 
of (B2), the Hessian matrix which determines the quadratic phase can be manipulated 
in the following way 

a ( J  - J ’ )  

Be. J 

where, as usual, the symbol - indicates that the determinants are the same up to a 
sign. In all the derivatives here, +, +‘ and 1 are held k e d .  Also, J - J‘ and 11 are to 
be interpreted as 2-vectors in the plane orthogonal to e .  In order to emphasize that 
only the two components of J - J’ perpendicular to e are relevant in this Jacobian, 
we will in future write J ,  - JL. Finally, because variations in J coincide with those 
in e. J to first order, it is legitimate to replace e .  J with J in the last line of (B3). 

Computing the Gaussian integral then results in the approximation for 
Ki(z,z‘,t) that we see in (4.9), with the amplitude Di(z,z‘,t) given by the 
following equation 

’Ib get this we have already used the chain rule to combine the Jacobian of (B3) 
with the amplitude in (4.4). We can simplify the form of (84) further by using the 
local coordinates 0 (whose construction is discussed in the paragraph preceding (4.2)) 
instead of (+, p). To do this we note that the two sets of coordinates on SO(3) are 
related through the Jacobian 

where, for the sake of symmetry, we split 0 into a single component e,, parallel to e 
and two components 8, perpendicular to e. (BS) is proved in appendix C Using this 
relationship, we can rewrite the amplitude Dj(z,x’, t )  in the form given in (4.10). 
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Let us finally outline how the Maslov index pj is determined in these calculations. 
The Maslov index p j  receives contributions from a number of different sources which 
we outline as follows. The first contribution is from the Maslov index p of the 
propagator K(z ,z ' , t ,  R).  'Ib this we must add the number of positive eigenvalues 
of the symmetric Hessian matrix in (B3) (notice that there is a minus sign in front 
of this matrix). Then, if sin( p/2) is negative, we must add 2 to the index to account 
for absorbing the sin(p/2) term inside the modulus of (84). We decide on a definite 
angle 'p by choosing the sign of e such that e .  J > 0 and choosing 'p to lie 
between -T and r. With this choice of p, it is the exp [+i(j  + $)p] /2i part of the 
sin [(j + ;)p] term that gives rise to the stationaly phase condition in (4.6) and (4.7). 
Fially, we add 1 to the index to account for the phase factor of l / i  that arises when 
sin [(j + ;)PI, is broken into exponentials. 

Appendix C 

In this appendix we consider the relationship between the local coordinates (e,, 01,) 
and (+,p), and show that the Jacobian corresponding to a change from one set of 
these coordinates to the other is given by (B5). 

Let us consider these sets of coordinates in the neighbourhood of some definite 
rotation R,, = R(e , ,p , ) .  We prove (B5) by showing that, to first order in small 
variations away from R, 

e l l=v -pu  and e L = + - R , $ .  (C1) 

We can then express the Jacobian for the change of coordinates (+,v) - ( O L , O l , )  
in the form 

= 1(1- eipo)(l- e-ipo)l 

= 4sin2(p,/2) (a) 
where by (I - R,JL we mean the restriction of the matrix I - R, to the plane 
perpendicular to ew This last form reproduces exactly (B5). 

In order to justify (Cl), we let R(O) and R(+) represent the near-identity 
rotations corresponding to the vectors 0 and + respectively, and note that the 
definitions of these coordinates allow us to write 

WO)R,  = R(R(+)e,,Pp) = N + ) R ( e u . v -  v u ) R u N + ) - '  
I - 1  = N + ) W e u 3 v -  (oo)RoW+)- Ro 

= R(+)R(eo,  cp - v,WR"+)-'. (C3) 

Each of the three matrices in this last form is near-identity, so we can expand out 
the matrices to first order in terms of 3-vectors. Doing so, and equating components 
with those on the left hand side, we immediately recover (Cl). 
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